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SYNOPSIS

Thermal decomposition activation energies have been determined using two

methods of Thermogravimetric Analysis (TGA), with good correlation being obtained

between the two techniques. Initial heating curves indicated a two-component system

for Coflon (i.e. polymer plus placticizer) but a single component system for Tefzel.

Two widely differing activation energies were for Coflon supported this view, 15

kcal/mol being associated with plasticizer, and 40 kcal/mol with polymer degradation.

With Tefzel, values were 40-45 kcal/mol, the former perhaps being associated with a

low molecular weight fraction. Appropriate acceleration factors have been determined.

Thermomechanical Analysis (TMA) has shown considerable dimensional

change during temperature cycles. For unaged pipe sections heating to 100oc and then

holding the temperature resulted in a stable thickness increase of 2%., wheras the

Coflon thickness decreased continuously, reaching -4% in 2.7 weeks. Previously-

strained tensile bars of Tefzel expanded on cooling during TMA.

SEM performed on H2S-aged Coflon samples showed significant changes in

both physical and chemical nature. The first may have resulted from explosive

decompression after part of the aging process. Chemically extensive

dehydrofluorination was indicated, and sulfur was present as a result of the aging.

These observations indicate that chemical attack of PVDF can occur in some

circumstances.



1.0 Determination of Activation Energies for Coflon and Tefzel Pipe

Materials Using Thermogravimetric Techniques

1.1 Description

Method 1 - Variable Temperature Rate Tests

This thermogravimetric technique involves heating replicate specimens separately at

differing temperature ramp rates while monitoring weight loss [ 1]. Figures 1 and 2 show these

weight loss curves for Tefzel and Coflon pipe respectively. From the thermal curves, the time

required to reach a certain weight loss value is obtained. The activation energy is then

determined using the method of Flynn and Wall [2] by plotting logarithm of heating rate

versus the reciprocal of temperature of constant decomposition level,

where:

-R I dlogfl ]
E(a) =TLd- 7 j

E(a) = Activation Energy (cal/mol)

R = Gas Constant (1.987 cal/mol)

T = Temperature at Constant Conversion (°K)

13= Heating Rate (°C/min.)

b = Constant (= 0.457)

(1)

The value of the derivative term (d log 13/[d(1/T)] ) is the slope of the line in the

Arrhenius plots. The activation energy is then used to determine acceleration factors under

conditions of elevated temperature exposure.

Method 2 - Constant Temperature Tests

This is also a thermogravimetric method. In this case the specimen is heated to a

predetermined temperature and the amount of time required to achieve a certain level of

weight loss is recorded. Several different temperatures are used to construct an Arrhenius plot

with log time to a certain percentage weight loss versus the reciprocal of the corresponding

temperature. The acceleration factor can then be calculated using the following equation:

Where:

A

E(a) =

r =

T s =

Tt =

A : exp 7", T, (2)

Acceleration Factor

Activation Energy (kcal/mol)

Boltzsmann's Constant,

Service Temperature (°K)

Test Temperature (°K).



1.2 Results

Figure 2 gives strong evidence for two components for Coflon, because of the

transient step. In contrast, Figure 1 indicates a single component situation.

Figures 3-7 show Arrhenius plots obtained from isothermal experiments on Coflon

pipe specimens. The time necessary to achieve a certain percentage weight loss is plotted

versus the independent variable, temperature.

Figures 8-14 show Arrhenius data plots obtained from tests on Tefzel pipe specimens.

In these cases the tests were performed at different heating rates, displayed as log heating rate.

The temperature at which a certain level of decomposition is obtained is plotted vs. the

heating rate.

Coflon was tested by both techniques, while the Tefzel has only been tested by the

variable heating rate technique. Taking the E(a) balues from the previous figures, activation

energy vs. percent weight loss is displayed in Figure 15. Note that comparison between the

variable heating rate experiments and isothermal tests shows a good correlation between the

two methods. The activation energy has a relatively low value, =15 kcal/mol, attributed to

plastisizer diffusing out of the polymer. When most of the plastisizer is removed (_= 11% by

weight for Coflon) the activation energy moves to a higher level, _--40 kcal/mol, now

presumably relating to polymer degradation.

Figure 16 shows a similar plot of activation energy vs. percent weight loss for Tefzel

pipe material. Here the activation energy begins at 40 kcal/mol during the early weight loss

process and stabilizes at 45 kcal/mol at the higher percentage weight losses. The early weight

loss may be due to loss of low molecular weight components from the Tefzel.

Figures 17-19 show the acceleration factors associated with the three activation energy

values described above. As expected the biggest difference seen when comparing these plots

arrises from the low acceleration factors associated with the evolution of plasticizer from

Coflon. This is a result of the fact that the diffusion process is a relatively rapid process by

itself and, therefore, temperature does not accelerate the process appreciably.

The diffusion ofplastisizer from Coflon is illustrated in the photo in Fig 20. It shows

the surface appearance of the inside diameter of the Coflon before and after aging in a 100°C

oven. Note the plastisizer collecting in droplets on the surface of the heat aged specimen.

2.0 Thermomechanical Analysis (TMA)

2.1 Analysis ofYielded Tefzel Specimen

Investigation of the yielded gauge-length portions of the previously methanol exposed

Tefzel specimens has been performed. Specimens were cut from the center of yielded tensile

bars. After placing the specimen in the test chamber the temperature was lowered to -150°C

at2er which the temperature was ramped to +200°C while monitoring dimensional changes,



/'r;Rg--

Table 1 summarizes the results. These specimens, having been stressed beyond the

yield point, contain extreme residual stresses as evidenced by the data in Table 1.

All of the yielded specimens tested thus far have expanded in the axial direction during the

initial cooling cycle (observed but not plotted). This unusual feature perhaps arises from

stresses remaining from the earlier mechanical testing. During the ramp to +200°C shrinkage

in the axial direction amounts to about 30% while width and thickness increase by about 25%.

The control (no stress and no methanol exposure) shrinks through the thickness by

13%. This may be due to residual stresses occurring during the extrusion process.

2.2 Analysis of Unaged Tefzel and Coflon Pipe Specimens

TMA was performed on pipe sections ofunaged Tefzel and Coflon which had

experienced no previous stress. The pipe specimens had the following dimensions.

1. Coflon with 5 mm wall thickness and 70 mm i.d..

3. Tefzel pipe 3 mm wall thickness and 35 mm i.d.

Sections which were cut from the pipe samples were placed in the TMA specimen

chamber. The temperature was ramped from ambient to 20°C/minute up to 100°C where

it was held isothermally while monitoring dimensional change in the thickness of the

specimen.

Figure 21 shows the results for the tests; note that 100oc is reached after about 4

minutes. During the temperature ramping portion of the test, Tefzel expanded slightly up

until reaching 65°C at which point a small amount of shrinkage occurred. This was

followed by significant expansion beginning at 95°C. After several minutes at 100°C the

specimen seems to have stabilized and is equilibrating.

In contrast to the Tefzel behavior, Coflon begins to shrink immediately during the

temperature ramp and continues to shrink throughout the test run. After 27,000 minutes

(2.7 weeks), the specimen thickness is still decreasing and it appears that much more time

is needed to reach equilibrium.

The dimensional changes occurring in the Tefzel pipe sample have been

characterized in all three directions - wall thickness, axial, and circumferential. The

equilibrated results are shown in Figure 22.

3.0 Scanning Electron Microscopy (SEM) and X-RAY Analysis of Aged

Coflon

Scanning Electron Microscopy was performed on sections cut through aged Coflon

samples (5% H2S 7days 120°C, followed by methane permeation at 2500 psi and 130°C for 1

day). Figures 23-31 provide a visual and chemical mapping through the bulk of the samples.

Videotaping of the SEM samples was also performed. The analysis was conducted using a

Amray 1820 Scanning Electron Microscope interfaced with a Kevex Multichannel Analyzer

for elemental detection and mapping.



Themicrographsindicateanextremelysmoothsurfacefor theunagedCoflon material.
Micrographsat thesamemagnificationindicateacraterfilled cavernoussurfacewith theaged
Coflonmaterial.Thetopographyextendsthroughoutthethicknessof thesamplenotjust on
thesurface.This issimilarto thesurfacesobservedwhenPVC is agedandembrittledafter
longtermoutsideaging. Thismaywell betheresultof explosivedecompressionat theendof
thepermeationtesting.

Thex-ray analysisof theagedsampleindicatesthepresenceof a high levelof sulfur
(decreasingfrom samplesurfaceto center)andsmalleramountsof Calcium,Zinc,andSilica.
Thecalciumandzinccouldbe involvedin thestabilizerpackagefor thepolymer.The silicais
probablyfrom somedustcontaminationof.thesurface.No fluorinepeakis evidentin theaged
Coflonsample,it is lost in thebaseline.Theunagedx-rayanalysisindicatesaverystrong
absorptionof Fluorinein thespectrum.No otherelementsareobviousin thespectraofthe
unagedCoflon.It iswell knownthat sulfurcanshieldthefluorinepeak; however,it is
surprisingto seesuchastrongpeaktotallyabsentin theagedspecimen.A tremendous
decreasein thefluorinecontenton thesurfaceof theagedCoflonalsowasshownpreviously
by ESCA [3].

4.0 Elemental Analysis of Aged and Unaged Coflon

In order to substantiate the ESCA results described previously, [3] and the x-ray

analysis, bulk elemental analysis was performed on the samples described in Section 3.0.

Tables 2 and 3 compare the elemental analysis results with the ESCA results. Interestingly, the

relative carbon content is apparently increasing in both the interior and on the surface of the

material after aging. Also note that the sulfur content within the bulk material after aging

compares well with the concentrations found on the surface of the aged material. These facts

coupled with the relative increase in hydrogen concentration in the interior of the specimen

indicate that the mechanism occuring at both the surface and interior of the aged specimen

may be dehydrofluorination followed by partial crosslinking with sulfur. What role the

plastsizer, or other gases present during aging, play in accelerating the process (if any) is

unknown at this point.
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Specimen C

5% H2S 7days 130°C, 71.5

methane permeation at 2500

psi and 130°C

Coflon Control (una_ed) 40.7

Table 2 - Elemental Analysis Results for Coflon

from the bulk interior of specimen.

N

7.3

H F

11.5

4.1

S

1.29

<0.1

Elemental Composition data measured

Specimen

Coflon COF4 Aged in 5%

H2S at 140°C 1000 psi for

7 days
No Permeation

Coflon Control (unaged)

C N O

75 3.1 14

52 --- 3.1

F

1.6

44

Si

4.1

0.3

S

1.3

0.17

Fe Zn

0.5? 0.4

Note: 9 = weak signal

.... no signal detected

Table 3 - ESCA Results for Coflon Elemental Composition data measured from the surface

(approximately the top 100 Angstroms) of each sample and expressed in atomic

percent units for the elements detected.
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Figure 3 - Arrhenius plot obtained from four separate isothermal experiments; time to

0.5% weight loss; Coflon pipe specimens.
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Figure 4 - Arrhenius plot obtained from four separate isothermal experiments; time to

0.7% weight loss; Coflon pipe specimens.
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Figure 5 - Arrhenius plot obtained from four separate isothermal experiments; time

to 0.8% weight loss; Coflon pipe specimens.
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Figure 6 - Arrhenius plot obtained from four separate isothermal experiments; time

to 12% weight loss; Coflon pipe specimens.
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Figure 7 - Arrhenius plot obtained from four separate isothermal experiments; time

to 200 weight loss; Coflon pipe specimens.
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Figure 8 - Arrhenius plot obtained from varied heating rate experiments;

temperature at 0.3% weight loss recorded; Tefzel pipe specimens.
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Figure 9 - Arrhenius plot obtained from varied heating rate experiments;

temperature at 0.5% weight loss recorded; Tefzel pipe specimens.
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Figure 10 - Arrhenius plot obtained from varied heating rate experiments;

temperature at 0.7% weight loss recorded; Tefzel pipe specimens.
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Arrhenius plot obtained from varied heating rate experiments;

temperature at 1% weight loss recorded; Tefzel pipe specimens.
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Arrhenius plot obtained from varied heating rate experiments;

temperature at 5% weight loss recorded; Tefzel pipe specimens.
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Figure 13 - Arrhenius plot obtained from varied heating rate experiments;

temperature at 10% weight loss recorded; Tefzel pipe specimens.
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Figure 14 - Arrhenius plot obtained from varied heating rate experiments;

temperature at 20% weight loss recorded; Tefzel pipe specimens.
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Figure 15 - Activation energy vs. percent weight loss; comparison of variable heating

rate experiments and isothermal tests; Coflon Pipe.
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Activation energy vs. percent weight loss; activation energies were

obtained from variable heating rate experiments; Tefzel Ppe.
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Figure 20 - Coflon before (rt) and after (it) aging in 100°C oven for 24 hrs; inside

diameter of the specimens shown. Specimen width = 10 mm.
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Tefzel pipe-wall dimensional equilibrium at 100°C; Tefzel pipe specimen

unaged, 3 mm wall thickness.
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Figure 22 - Pipe wall dimensional change at 100°C isothermal for and Tefzel
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Figure 23- LowSIagnification(50x) SEAlof Coflon Surface, Aged in 5%H2S at
120oc for 7 day's, Percneation performed in methane at 2500 psi and 130°C for l day.

Figure 24 - SE31 of (;_llon Sttrf:tce. 5()tlx. :\g_?d in 5°,o H2S at 120°C for 7 days,

I-'cm_:',ltiol_ t_,.:_ti_t,: _',! ir_ '.r_'l!t _' :_t 2"_:_I i_-;i _:_ct 13_1"(" l\'_I I day.



Figure 25 - Side-by-side SEM of Coflon Surface, 314x, Unaged vs Aged in 5% H2S at

120OCfor 7 days, Permeation perforrned in methane at 2500 psi and 130°C for I day.

Figt,,'c 26 - S1'_31 thruugh the thit'lu_css _:_f('()f'h)ll. 154x, ..\_c_.t ix_ 5°.._ 1125 at 120°C for

7 ttztv_,. I)L'ttxlL':.tti_.',rar,erlk)Itta,.:d ill ttauil_:ttlL' ',it 2 _'_/ I_:-;i:._nd I ;+_"(." I\_r t day.



Figure 27 - SEM through tile thickness of Coflon, 212x, Aged in 5% H2S at 120°Clot

7 days, Permeation performed in methane at 2500 psi and 130°C for I day.
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